Rhodes>Mathematics>Research>Artificial Intelligence Research Group (AIRG)

Rhodes Artificial Intelligence Research Group (RAIRG)

Rhodes Artificial Intelligence Research Group (RAIRG) is based in the Department of Mathematics. The academics in the group have expertise in applied mathematics, computer science, Bayesian techniques, artificial intelligence, signal processing, statistics, and modern astronomical data processing/analysis. Interdisciplinary research thrusts are a major ambition of the group. We welcome MSc, Ph.D., and postdoc candidates willing to learn and contribute. 

Staff:

Prof Marcellin Atemkeng (Coordinator), email: m.atemkeng@ru.ac.za 

Mr Sisipho Hamlomo, email: S.Hamlomo@ru.ac.za

 

Available Projects:

Honours, MSc, PhD

 

Current students:

Siphendulwe Zaza

Degree: PhD

Subject: Applied mathematics

Field of Study: Machine Learning
Research: 
Supervisor(s): Prof Marcellin Atemkeng & Dr Taryn Murray (SAIAB)
Based: Grahamstown
Future aims: 
 
 
Nicole Oyetunji
Student_RAIRG
 
Degree: PhD

Subject: Applied mathematics

Field of Study: Machine Learning 
Research: 
Supervisor(s): Dr Taryn Murray (SAIAB) & Prof Marcellin Atemkeng
Based: Grahamstown
Future aims: 
 
 
Brian Welman

 

Degree: PhD
Subject: Physics
Field of Study: Machine Learning, Astronomy and LLM
Research: 
Supervisor(s): Distinguished Prof Oleg Smirnov & Prof Marcellin Atemkeng 
Based: Grahamstown
Future aims: 
 
 
sisipho hamlomo

 

Degree: PhD
Subject: Applied Mathematics
Field of Study: Fundamental Machine Learning
Research: 
Supervisor(s): Prof Marcellin Atemkeng 
Based: Grahamstown
Future aims: 
 
 
Georgina Bianca Fiorentinos

MSc student maths

Degree: MSc
Subject: Applied mathematics
Field of Study: Fundamental Machine Learning
Research: This research explores the optimisation and effectiveness of deep learning architectures, with an emphasis on convolutional neural networks. It analyses different architectures and their influence on the signal-to-noise propagation during training.
Supervisor(s): Prof Marcellin Atemkeng 
Based: Cape Town
Future aims: As I am already working in industry as a Data Scientist, I aim to continue applying my learnings to real-world problems.
 
 
Masixole Jojo

MSc student Maths

Degree: MSc
Subject:  Applied mathematics
Field of Study: Machine learning
Research:
Supervisor(s): Dr Taryn Murray (SAIAB) & Prof Marcellin Atemkeng 
Based: Grahamstown
Future aims:  
 
  
 
Casey Chuma 

 

Degree: MSc
Subject:  Applied mathematics
Field of Study: Machine learning
Research:
Supervisor(s): Prof Marcellin Atemkeng 
Based: Grahamstown
Future aims: 
 
Nkosinathi Ntuli 

 

Degree: MSc
Subject:  Applied mathematics
Field of Study: Machine learning
Research:
Supervisor(s): Prof Francesca Porri (SAIAB) & Prof Marcellin Atemkeng 
Based: Grahamstown
Future aims: 
 

Alumni (graduated at RAIRG):

  • Masixole Jojo (Honours 2025, distinction)
  • Siphelele Futhusi (Honours 2025, distinction)
  • Casey Chuma (Honours 2025)
  • Nkosinathi Ntuli (Honours 2025)
  • Vanqa Kamva (MSc 2024)
  • Nicole Oyetunji (MSc 2024, distinction)
  • Irene Nandutu (PhD 2023)
  • Avuya Deyi (MSc 2023, distinction)
  • Sydil Kupa (MSc 2023)
  • Sisipho Hamlom (MSc 2022)
  • Siphendulwe Zaza (Honours 2022, distinction)
  • Sihle Gcilitshana (Honours 2021, distinction)
  • Georgina Bianca (Honours 2021, distinction)
  • Vanqa Kamva (Honours 2020, distinction)
  • Myren Govender (Honours 2020)
  • Benjamin Strelitz (Honours 2019, distinction)

 

Selected Publications [2024, 2025]

  • Atemkeng, M. T., Chuma, C., Zaza, S., Nunhokee, C. D., & Smirnov, O. M. (2025). A benchmark analysis of saliency-based explainable deep learning methods for the morphological classification of radio galaxies. arXiv preprint arXiv:2502.17207.
  • Zaza, S., Atemkeng, M., Murray, T. S., Filmalter, J. D., & Cowley, P. D. (2025). Unsupervised anomaly detection in large-scale estuarine acoustic telemetry data. arXiv preprint arXiv:2502.01543. Under Review in Ecological Informatics
  • Ataei, P., & Atemkeng, M. (2025). Terramycelium: A Reference Architecture for Adaptive Big Data Systems. Under Review in Big Data Mining and Analytics
  • Nandutu I, Atemkeng M, Okouma P, Mgqatsa N, Fendji JL, Tchakounte F. Enhancing Highway Security and Wildlife Safety: Mitigating Wildlife-Vehicle Collisions with Deep Learning and Drone Technology. In press; Journal of Intelligent Systems
  • Hamlomo, S., Atemkeng, M., Brima, Y., Nunhokee, C., & Baxter, J. (2025). A systematic review of low-rank and local low-rank matrix approximation in big data medical imaging. Neural Computing and Applications, 1-56.
  • Ngueajio, M., Aryal, S., Atemkeng, M., Washington, G., & Rawat, D. (2025). Decoding Fake News and Hate Speech: A Survey of Explainable AI Techniques: A Survey of Explainable AI Techniques. ACM Computing Surveys.
  • Tchokogoué, T., Noumsi, A. V., Atemkeng, M., & Fono, L. A. (2025). Towards Precision Agriculture: A Dataset for Early Detection of Corn Leaf Pests. Data in Brief, 111394.
  • Fadja, A. N., Tagni, A. G. F., Che, S. R., & Atemkeng, M. (2025). A Dataset of Annotated African Plum Images from Cameroon for AI-Based Quality Assessment. Data in Brief, 111351.
  • Fendji, J. L. K., Donatien, D., & Atemkeng, M. (2025). Hybrid Profile based Multi-document Text Summarisation. Procedia Computer Science, 252, 862-872.
  • Atemkeng, M., Hamlomo, S., Welman, B., Oyetunji, N., Ataei, P., & Fendji, J. L. K. (2025). Ethics of Software Programming with Generative AI: Is Programming without Generative AI always radical?. arXiv preprint arXiv:2408.10554. Accepted in  Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
  • M Atemkeng, S Perkins, E Seck, S Makhathini, O Smirnov, L Bester, B Hugo. Lossy Compression of Large-Scale Radio Interferometric Data. https://arxiv.org/abs/2304.07050, Under Review in Monthly Notices of the Royal Astronomical Society
  • Brima, Y., & Atemkeng, M. (2024). Saliency-driven explainable deep learning in medical imaging: bridging visual explainability and statistical quantitative analysis. BioData Mining17(1), 1-33.
  • Atemkeng, M., Osanyindoro, V., Rockefeller, R., Hamlomo, S., Mulongo, J., Ansah-Narh, T., ... & Fadja, A. N. (2024). Ensemble learning and deep learning-based defect detection in power generation plants. Journal of Intelligent Systems33(1), 20230283.
  • Tchokogoué, T., Noumsi, A. V., Atemkeng, M., Fonkou, M. F. Y., & Fono, L. A. (2024). A robust segmentation method combined with classification algorithms for field-based diagnosis of maize plant phytosanitary state. Journal of Intelligent Systems33(1), 20230049.
  • Nhlapho, W., Atemkeng, M., Brima, Y., & Ndogmo, J. C. (2024). Bridging the Gap: Exploring Interpretability in Deep Learning Models for Brain Tumor Detection and Diagnosis from MRI Images. Information15(4), 182.
  • Fadja, A. N., Che, S. R., & Atemkemg, M. (2024). Intelligent Vision System with Pruning and Web Interface for Real-Time Defect Detection on African Plum Surfaces. Information15(10), 635.
  • Varmantchaonala, C. M., Fendji, J. L. E., Schöning, J., & Atemkeng, M. (2024). Quantum Natural Language Processing: A Comprehensive Survey. IEEE Access.

Last Modified: Sun, 09 Mar 2025 20:10:18 SAST